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The non-isotropic effects of solid-body rotation on homogeneous turbulence are 
investigated in this paper. A spectral formalism using eigenmodes introduces the 
spectral Coriolis effects more easily and leads to simpler expressions for the integral 
quadratic terms which come mostly from classical two-point closures. The analysis 
is then applied to a specific eddy damped quasi-normal Markovian model, which 
includes the inertial waves regime in the evaluation of triple correlations. This 
procedure allows for a departure from isotropy by external rotation effects. When 
started with rigorously isotropic initial data, the various trends observed on the 
Reynolds stresses and the integral lengthscales remain in accordance with the results 
from direct simulations ; moreover they reflect a very specific spectral angular 
distribution. Such an angular dependence allows a drain of spectral energy from the 
parallel to the normal wave vectors (with respect to the rotation axis), and thus 
appears consistent with a trend toward two-dimensionality. 

1. Introduction 
Among the different aspects of motion in rotating fluids, the influence of Coriolis 

effects on the dynamics of an homogeneous turbulent field is not well understood. 
When one considers the experiments already done in this area, the information 
available is scarce and even contradictory. This fact is due especially to the great 
difficulties one encounters when trying to simulate an ideal configuration in a 
laboratory. Several experiments have been performed in rotating tanks with 
different forcing systems (see e.g. Hopfinger, Browand & Gagne 1983 for a review of 
these experiments). Most of them were aimed at  obtaining a stationary quasi-two- 
dimensional flow in the tank, as predicted by the Proudman theorem, and investigate 
some fundamental properties of the quasi-geostrophic state, a state which is 
encountered in geophysical flows. However, before their transition to this asymptotic 
state, the flows were generally not homogeneous, and the mechanisms involved there 
were certainly far outside the frame of homogeneous turbulence. 

The only experiment that seems to have entered this homogeneous framework is 
that by Wigeland (1978) in which a uniform flow was set into solid-body rotation as 
it passed through both a rotating honeycomb and a rotating turbulence-generating 
grid. By these means a satisfactory homogeneous field was obtained with small 
Rossby numbers. This experiment, because of its underlying principle, focused on the 
first stages of the effects of a strong rotation on an initially three-dimensional state, 
which in this case would be essentially a classical grid-generated turbulence. The 
main results obtained in these experiments showed that the rotation slowed the 
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kinetic energy decay and increased the lengthscales as well as increasing their 
departures from isotropic relations. These results have been predicted by numerical 
simulations (see Bardina, Ferziger & Rogallo 1985; Dang & Roy 1985). Dcspitc thc 
increasing anisotropy of the lengthscales, the Reynolds stress tensor remains nearly 
spherical (equality of the three principal components) in the simulat,ions. Thus the 
anisotropy of the flow is masked if one considers only the departure from sphericity 
of the Reynolds stress tensor. It is therefore necessary to account for the dist,ribut,ion 
in wave space, or, equivalently, the second-order spectral tensor. This last contains 
the most detailed information about the anisotropy, and makes it possible to ret’rieve 
by integration all the statistical quantities, including integral 1engt)hscales and 
Reynolds stress components. Moreover, an understanding of the underlying 
mechanisms is of fundamental importance when considering thc problem of t,he 
transition from strongly three-dimensional turbulence to a quasi-two-dimensional 
flow dominated by rotation. Numerical simulations have not yet brought decisive 
information to this situation. The present analysis intends to delve further into this 
problem. 

First, in order to overcome the difficulties encountered in modclling t.he, effects of 
the Coriolis force, it will be useful to complement and improve t,he present 
formulations (Batchelor 1953; Craya 1958; and Herring 1974 among others) in order 
to have ‘a sufficiently highly structured mathematical level to deal with the 
subtleties of the problem ’ (Herring). 

Starting from a pure isot.ropic state, rotation acts only through nonlinear 
interactions. Considering the set of statistical equations governing the correlations of 
any order, these nonlinear interactions are accounted for by t;he triple correlation if 
one looks at the double correlations. l n  the presence of rotation, linearized equations 
exhibit a regime of waves called inertial waves. Cambon (1982), Cambon, Teisskdre 
& Jeandel (1985) and Cambon & Jacquin (1985) have shown how this linear wave 
regime influences the velocity correlations of any order. Section 2 summarizes the 
procedures adopted. In  spectral space, the kernels of the associated linear operators 
are generated by products of the rotation matrix around the wave vector, and it bhus 
appears convenient to work with corresponding eigenmodes. This formulat.ion takes 
into account, in a simple way, the dispersive and non-isotropic properties of the 
inertial waves : it also exhibits specific effects of rotation coming in through the t,hird- 
order moment equation. 

The spectral approach allows one to accurately separate pure linear and nonlinear 
mechanisms. The latter are accounted for through a model for the triple corre1at)ions. 
This model is based on an eddy damped quasi-normal Markovian (EDQNM) 
assumption, which retains the non-isotropic structure of the operators togcthcr with 
a damping rate chosen according to standard procedures. 

The pure linear effects influence the double correlations only if one considers a n  
initially non-isotropic state. These effects are preliminarily analysed in 93, where t,he 
triple correlations are ignored in the evolution of the double correlations. Particular 
non-isotropic initial conditions are generated by solutions of rapid-distortion 
equations. The corresponding evolution of Reynolds stress tensors and integral 
lengthscales are studied, and the detailed relationship between physical and spectral 
quantitities is also given. 

In  $4,  the nonlinear interactions are illuminated by application t,o the model 
problem, which starts with an isotropic initial condition. In this case, the departure 
from isotropy of double correlation is, at least in a preliminary phase, only governed 
by triple Correlations. Results concerning the evolution of the Reynolds stress tensor 
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FIGURE 1. Sketch of a sphere of radius k and local frame attached to k 

and the lengthscales are presented. Through an extensive analysis of spectral 
quantities, some fundamental mechanisms underlying the observed trends are 
illuminated. The trends towards two-dimensionality are discussed in $5 .  

2. Formalism for non-isotropic homogeneous turbulence 
2.1. Kinematics of the JEuctuating je ld  

Let u(x ,  t )  be a statistically homogeneous vclocity field. When considering 
homogeneous incompressible flows, it is convenient to work with the Fourier 
transform of u defined by 

u ( x ,  t )  exp (-ik.x) d3x; i2 = - 1. 

The condition of incompressibility implies that the complex vector li is located in the 
plane Pk normal to the wave vector k ,  and the following decomposition (Herring 
1974) may be used: 

The vectors e(') and d2), characterizing the local frame, are 

C(k, t )  = ul(k, t)  e(a)(k);  a = 1,2.  

(see figure 1) .  Here the summation convention is implied; i t a  
values 1, 2, 3 and greek indices take values 1 and 2 only. 

ic ini ices take t ie 

In order to have-a simpler formulation of the change- of local frame (rotation of 
angle vo in the Pk plane), it is convenient to use the following complex form: 

N(k) = e2(k)-ie(')(k); N*(k) = e(2)(k)+ie(1)(k) = N(-k).  

N, N* and k are thus the eigenvectors of the rotation matrix R,  which has k for its 
axis and p?,, for its angle, according to the following intrinsic expression : 

k @ k  N k) @ N( - k) - ei%(k) + N( - k)  @ N(k) - e-ivo(k)) + ~ 

k2 . R(k/k,vo) = ?( ( 

Note that the decomposition in terms of ' helicity waves ' proposed by Lesieur (1972) 
introduced the complex vector N(k)  eik.x as an eigenvector of the curl operator. 
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I n  the case of a solenoidal field (u non-divergent), R reduces to the following 

(1) 

which characterizes any change of the local frame. For 9, = 0, the classical projector 
P,,(k) = a,, - k,  k, /k2  is recovered. 

Two corresponding components Q, whose moduli are invariant can be substituted 
for the u:, so that 

projection rotation operator : 

G(k/k,p,) = i (N(k)  0 N( -k)elyii(k)+N( -k)  0 N(k) e-i‘7,Jk)), 

&(k, t )  = <+l(k, t )  N(k)  fC-,(k, 8) N( -k  ) = Z Qfk, t )  Nfik). (2) 
t=+1 

Considering now the governing equations, the velocity field u(x ,  t )  satisfies the 
Navier-Stokes equation including the Coriolis force term. The corresponding 
equation in spectral space is written as follows: 

s k. 
k 

(;+vkP)G,(k, t )  +20(3k/k~, j ,+4(k ,  t )  = - e m ( k )  k, G l @ ,  t )  G,(q, t )  d3p, 

where v is the kinematic viscosity, eijl the antisymmetric Ricci tensor and the integral 
is performed according to the selection rule p + q = k. 

Using the new variables &, it is found that 

k)Ce(k,t) = C -ti [k.N(e’p)I lN(-~k).N(s”q)l5~~@,t)Q~,(q,t)d~~. 

(3) 

This basic equation may be formally analysed as a model for the statistical equation 
(having a similar structure) obtained by the two-point closures. If the right-hand side 
of (3) is ignored, the following relation characterizes the linear wave regime 
completely : 

( ; + v ~ - 2 i ~ . -  k 
€”- €‘= f * 1 1 s 

&(k,t )exp(ik.x)  = exp i k . x + 2 & - t  Q(k,O); c =  k l ,  v = 0, 

where the Q are the eigenmodes and 252.klk2 is the phase speed. I n  the fixed frame 
of reference, the corresponding relation displays the kernel by using the matrix G 
(relation ( 1 ) )  : 

(4) 
li(k,t) = G(i,252.it).P(k,0). k k  

On the right-hand side of (31, i t  is convenient to separate in the triadic integral the 
terms depending only on the triad geometry and the terms depending also on the 
angular position of the plane containing k,p,  q.  Using the local framcs introduced by 
Craya (1958), who considered the triadic system in connection with the triple 
correlations, one finds the following expression : 

[ (  k 11 

x 1; dA exp [- i ( d  +€’A’+ eNAn)]  Q.@, t )  Q.(q, t ) ,  (5 )  

where k , p ,  q are the moduli of the vectors and A,  A’, A“ denote the angles of rotat.ion 
of the plane (k,p,q) respectively around k , p ,  and q.  A ,  is the domain of p and q so 
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that  k + p  + q = 0. In the complex formalism used above, A, A‘, A” are phases, 
accurately defined as follows : 

N(k)  = eiA((B+iy), N @ )  = eiA’(/?’+iy), N(q)  = e’”(F+iy), 

where (p, y ) ,  (/?’, y )  and (r, y )  are the triadic Craya local frames, attached to k , p ,  q 
respectively, so that y is normal to the plane containing ( k , p ,  4). 

2.2. Two-point correlations 
Now, extending the formalism to kinematics of the second-order ensemble mean 
moments of u,  we introduce the second-order spectral tensor Oij (k ,  t )  : 

(6:@, t )  zi,(k, t ) )  = Otj(k, t )  S(k-p) .  

Then, using the previous local frame, we write 

Oij(k, t )  = $ ~ ~ ( k ,  t )  e;(k) ef(k ). 

Note that for a particular choice of the polar direction (Qi = QS,,), the four 
components of @Lp give the four ‘basic scalars ’ of Craya (1958). Hence, we prefer to 
use linear combinations having invariance properties in considering an arbitrary 
change of the local frame. So the relation (2) leads to 

oi j (k ,  t )  = e(k, t )  P,(k)  + R e  [z(k,  t )q(k)N,(k) ]  + i-eijl h(k t )  - k, . 
k k 

Here e,Izl,h are invariants of the spectral tensor a j ( k , t ) :  e(k,t) is the (full three- 
dimensional) energy spectrum, defined by 

with 

a(k, t )  = i$(k,  t )  = @La(k, t )  

q( t )  = k(u(x, t ) + u ( x ,  t ) )  = [e(k,  t )  d3k; 
J 

h ( k ,  t )  is the helicity spectrum 

h(k, t )  = -;ieijl a j ( k ,  t )  k, = -$k(&(k, t)--&(k, t ) )  

+(u(x,  t )  - curl (u(x ,  t ) ) )  = h(k, t )  d3k; s so that 

z(k,  t )  is a complex deviator whose modulus is yet an invariant 

The symmetric real part of a j ( k ) ,  can be more intrinsically characterized by its real 
non-zero eigenvalues #(‘)(k),  q5@)((k) and the angle a,(k) from which is rotated 
(around k) the orthonormal eigenframe (principal axis) with the local frame (e(l), e@)) .  

In the orthonormal eigenframe (a ,  b, k / k ) ,  one has 

Re 0 = q P a  0 a+q5(2)b 0 6 ;  $(l) 2 q5(2) > 0, 

so that 

Thus z is a measure of the departure from isotropy of (3 in the Pk plane, and the ratio 
Izl/e appears as a spectral parameter analogous to  the structural parameter used by 
Townsend (1954) and Gence & Mathieu (1979). The formalism developed here is 
available for any anisotropic turbulence : if particular statistical symmetries are 
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Z 

Imaginary 
Symmetry e Real par t  par t  

Isotropy e ( k )  0 0 
Semi-isotropy e ( k )  0 0 

Axisymmetry Rez(k,y,) 0 
Semi-axisymmetry Rez(k ,pLk)  Imz(k,p,) 

TABLE 1 

considered, t,he number of variables describing the spectral tensor is reduced as 
shown in table 1 .  

With our definition, the prefix ‘semi’ in the table characterizes an invariance 
group including only the rotation (no reflectional symmetry). In  addition to the 
classical isotropic case, in the literature there are some attempts to treat (in the 
framework of two-point closures) semi-isotropy (Andre‘ & Lesieur 1977), or 
axisymmetry (Herring 1974). Herring denotes the scalar product ,uk as follows : 

k 
,uk = n.- k’ 

where n = OjO. The last symmetry mentioned in table 1 is of great interest when the 
external rotation is present,. In  the rotating frame, the set ( e ,  z ,  h) is governed by the 
following system of equations : 

($+2vk l )  e(k, t )  = t )  + Ti*i(k, t ) ,  

($ + 2vk2) h(k,  t )  = - ieijl Ic, [T,(k,  t )  - Tg(k, t ) ] .  J 
The right-hand side of the system depends on the triple correlations through the 
transfer tensor tij defined by 

t,(k, t )  = T,(k,  t )  + T$(k, t )  ; q j ( k ,  t )  = Bik, /(6,(g, t )  &j(k, t )  Gi@,  t ) )  d3p d3q. (10) 

The left-hand side includes both viscous and ‘linear’ Coriolis effects. can only 
introduce a coupling between the three previous equations through the closure. In 
the following section, the generalized transfer tensor qj will be expressed in terms of 
the functions of dependent variables using typical closure assumptions. 

2.3. The EDQNM closure 

This theory was proposed by Orszag (1970) and has been extensively used for 
isotropic turbulence. Following Cambon, Jeandel & Mathieu (1981 a ) ,  Cambon 
(1982), and Cambon, Teisskdre & Jeandel (1985), the approach is enlarged and the 
non-isotropic linear operator are accounted for, by considering both second- and 
third-order correlations. The linear solution (4) takes the symbolic form 

6, = G,4,. 
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Introducing the nonlinearity as an external term, the complet’e rat,? equation 
governing the fluctuating field ii is formally solved as follows : 

4, = G, 4, + 11 Gt-t,(tX)tr dt’. 

The same procedure, applied to the equations governing the correlations, leads to 

(<ti), = G, G,(G.li), + Gt-,, Gt-t, (4iiG),. dt‘ 

for the double correlations, and 

” A ” “  (2;2;2;), = G, G, G, (uuu), + G,-,, Gt-,. G,-,,(UUUU),. dt’ 1 
for the triple correlations. 

Only the last relation is concerned when applying the EDQNM assumptions. First, 
the fourth-order moments are expressed in terms of second order, as for a normal 
law : ” “ 6 ”  

Then the fourth-order cumulants, neglected above. are taken into account through 
an eddy damping y, which changes G into O+: 

G; = G,exp (-@). 

Last, the instantaneous value t’ = t of the double correlations only is accounted for, 
in accordance with the Markovian assumption. 

(uuuu),, = 2 (2;2;),, (44),, (quasi-normal assumption). 

Finally, one obtains the following closed relation : 
M 

The first term corresponds to a ‘linear’ (or zero Rossby number) evaluat,ion of the 
triple correlations; it has only a transient effect, as discussed at  the end of $4. So for 
the sake of simplicity, only the second term will be computed in numerical 

In this form, the initial data for triple correlations have been taken a t  t = - co and 
thus ‘forgotten ’. Considering the definition (lo), the detailed expression of the 
generalized transfer q j ( k ,  t )  corresponding to the symbolic form (12) becomes 

q,(k t) = S dt’J d3p kq [ ~ ~ m ( k ,  t ,  t’) ~ m u u ( k )  t, t’) o u n  @, t )  
-m k+p+q-O 

with P,,,(k) = i(k,Pm,(k) + h e n u ( k ) ) .  
Such an expression corresponds to a DIA formulation if we take Kraichnan’s 

response tensor for G+(k, t , t ‘ )  and if we replace the underlined t.erms of type: 
G,’,(k, t ,  t’) oum(k, t )  by the two-time tensor ouj(k ,  t ,  t’) (fluctuation-dissipation 
theorem). 
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In the EDQNMZ version, G+ is given by the product of the matrix G,  (which is also 
the zeroth order response tensor), and an isotropic damping term. so that2 

G+( k,  t ,  t ' )  = Re N(k) 0 N( - k) exp exp { - r (k ,  t )  ( t  - t ' )) .  ( 14) 

In the EDQNMl version, the Coriolis terms are neglected in the rate equation 
governing the triple correlations and the expression for G+ reduces to 

G+(k,t ,  t ') = P(k)exp{-q(k,t) ( t - t ' ) } .  

Note that, the two approaches are discussed by Cambon (1982), and Cambon et ab. 
(1985) in the case of turbulence subjected to both the strain and the rotation effects. 
Retaining the more sophisticated relation ( 14), and time integrating analytically in 
(13) we get 

where 

In the new characteristic times so defined, the classical isotropic relaxativn time O,,, 
is modified as follows by anisotropic fachors, including the solid-body rotation rate 
and the angular parameters pk = a - k / Q k ;  p p  = O.p/Qp; p,, = s; I -q/Qq: 

A modification of B k p p  by f2 was also proposed by Holloway & Hendershott (1977) 
in a simpler two-dimensional case (P-plane). 

At this stage, we can express the right-hand side terms in (9) in terms of e,z,h. 
Detailed calculations have been carried out with zero helicity, since helicity appears 
in (9) only if it already exists in the initial data. Indeed it can be shown that the 
tensor Ti deduced from (13) and (14) remains real, together with oij. As for the 
nonlinear term in (5) governing the fluctuating spectra 5, one obtains in the 
' influence matrices ' an optimal separation between moduli and angles by introducing 
the three angles A,  A', A". The new set of integration variables ( p ,  q, A )  takes the place 
of (Pl, P,, P3L so that 

Applying (13), (15) and (6), the integrands related to Ti++: and to  ( ~ j + T ~ ) N ~ N ~  
are expressed in terms of quadratic functions of e and z ,  respectively multiplied by 
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@;>; and e:lexp(-2ih). These quadratic terms then appear as a sum of the 
products of two terms chosen from the following set : 

e(k,  t ) ,  e @ ,  t ) ,  dq, t )  ; 
z(ek, t )  exp (2ieh), ~(e’p, t )  exp (2is‘h’), x(e”q, t )  exp (2ie”h”), (17) 

and weighted by coefficients depending only on k, p, q (through scalar products of 
vectors generating the specific triadic Craya local frames). 

For the sake of brevity,? we give as an example only the structure of the term 
dependent only on e in the energy transfer : 

q i ( k , t ) + T ; ( k , t )  = C dpdqA(ek,e’p,e”q) 

x e(q, t )  [ e @ ,  t )  - e(k, t ) ]  + . . . 
f - + l  
c’=T 1 
6”= & 1 

Note that the angular dependence, which requires a numerical evaluation of the h- 
integral, is introduced only by the set (17)  and by the times 6;; for the energy 
transfer and e;iexp (-2ih) for the anisotropy transfer (nonlinear term in the rate 
equation governing 2 ) .  The role of @$ appears crucial for the anisotropization 
mechanisms: forcing D to zero in the transfer terms, @$; becomes ekPp and the 
present model returns to the EDQNMl version, which is unable to predict a 
departure from isotropy in the case of pure rotation. 

3. Linear evolution of double correlations 

following form : 
On discarding the nonlinear terms in the closed system (9), the solution takes the 

(19) 
e(k, t )  = e(k, 0) exp ( -22vk2t), 

z (k , t )  = z(k,O)exp ( -22yk2t+4iSZtpk). 

These equations express the impact of inertial waves on double correlations in 
spectral space. The pure ‘linear ’ effects of rotation consist in a rotation of the eigen 
directions with a rate (4Q,uk) which depends on the orientation of the wave vector k 
with respect to the rotation axis. When we discard non-linear interactions, the 
inertial wave regime can influence the three-dimensional structure of energy only if 
the initial configuration is non-isotropic including a non-zero deviator x .  

In order to  have a deeper understanding of this problem we have built non- 
isotropic initial spectra by means of the rapid-distortion theory. Axisymmetric 
initial data are obtained by considering the effects of an axisymmetric duct on 
isotropic turbulence. One proceeds in the following way. One assumes that the 
turbulence is subjected to a constant mean strain rate matrix 

1 

(w ! -13 
during the time to.  

t A copy of the details of nonlinear interactions can be obtained from either the authors or the 
editor on request. 
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A negative value of the strain rate D corresponds to a convergent duct and a 
positive value to a divergent duct. Using the simplified analytical formulation given 
by Cambon et al. (1985) for rapid-distortion solutions, it is found that 

(20) e,(k, 0) = + [ $ Z ( k  t o )  +$i(k t o )  ; %(k,  0) = +[$i (k ,  to)  - $ : ( I t ,  t o ) ]  

with 

whcre E ( k )  denotes the isotropic energy spectrum before the distortion and K the 
wavenumber modified by the advective effects of the mean field : 

K 2  = k2[ (  1 -pi) rtUto +pi e-4Dto 1 
For practical applications, the type and the degree of anisotropy are fixed by the sign 
and thc value of the strain coefficient Ut,. Note that the usual assumption restricts 
the relevance of the rapid-distortion theory to evolution times short compared with 
a global typical nonlinear time such as 7 = y/F (here y is the turbulent kinetic energy 
and F its dissipation rate). However, the validity of the theory also depends on the 
size of the individual structures. In  particular when considering the characteristic 
nonlinear time as being a turnover time 

the theory may be relevant for small k (large structures), even if the former criterion 
does not hold. 

The rapid-distortion solutions (20) quickly give an unrealistic anisotropy in the 
larger wavenumber range. By assuming local isotropy in the small scale we propose 
the following isotropic averaging : 

e(k, 0) = e,(k, 0) exp { - ( ; J}+Es[ l -exP{ - 

z(k,  0) = z,(k, 0) exp 

-(;I}] 
where k ,  is chosen as the inverse of the integral lengthscale. Our axisymmetric initial 
data thus generated are more complicated than those used, for example, by Herring 
(1974), but  they have two interesting properties. 

First, the property of ‘axial isotropy’ is ensured when k is parallel to the 
symmetry axis : 

In  order to ensure this local vanishing, the angular dependence of x is an essential 
condition. 

Secondly, our procedure allows the initially axisymmetric turbulence generated by 
a grid to be approached. Generally, such a turbulence is characterized in the first test 
section by a Reynolds stress tensor of the ‘cigar’ type, having a longitudinal 
(streamwise) component greater than the transversal. Thus, considering the possible 
improvement of the isotropy by means of a convergent duct (Comte-Rellot & Corrsin 
1971) together with the reversibility of the straining process, one can expect that for 
Dt, > 0 the initial data fit well with the axisymmetric grid turbulence. 

p u , = + l - z = O .  
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Now, we can analyse the consequences of the linear behaviour through classical 
one-point correlations. The Reynolds stress tensor is deduced by an integration of U 
in the whole spectral space. In the axi- or semi-axisymmetric case, we are concerned 
with the two components: 

( 2 2 )  I 1 - 
4 = 271. JOm k2dk J-, [e(k p, t )  +Re z(k,  pi t)l(1 -p2 )  dp, 

1 _ _  
u: = ui = 7c 1; k2 dk J-l [e (k ,  p, t) (1 + p2) - Re z ( k ,  p, t )  (1 -,LA')] dp. 

The integral lengthscales are obtained by plane integrations. Recall that in 
physical space, the scale L i j , L  represents a correlation length in the direction 1 
between two components of the fluctuating velocity referenced by i and j; 

I r m  

with rk = dkl. For homogeneous turbulence, one has 

In our simplified configuration, the scales Lii, , characterized by a longitudinal 
separation, emphasize the spectral distribution in 'the equatorial plane ' (pk = 0) and 
require no angular integration : 

L,,,, = ys," kdk[e(k, 0, t )  + Re z ( k ,  0, 
u3 

k dk [e(k, 0, t )  -Re z ( k ,  0, t)]. 

Only the scales Lii, (i not summed) relative to a transversal separation introduce an 
integration over pk : 

Considering the integral relations between two-point (spectral) and one-point 
correlations, it is now easy to predict the evolution of one-point quantities. 
Neglecting the viscosity effects for the sake of simplicity, the contribution of the 
deviator z introduces an oscillating trend through the term exp (4iSztp), but the 
integration over p leads to  a damping and the oscillating behaviour vanishes if 

The damping already found by Itsweire, Chabert & Gence (1979) in a particular 
p = 0. 

configuration, is linked to the asymptotic behaviour of the integral 

J;lf(P)exP (4iQtp) dp 

(close to a Fourier transform), for large values of the parameter 4Qt. Thus one 
can expect damped oscillations leading to an asymptotic value (only depending 
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FIGIJRE 2 .  Linear evolution of (a )  the energy components and ( b )  the length-scales for 
l2 = 10 s-l starting from an axisymmetrically dilated turbulence (rapid distortion). 

_ _  
on e(k,,u,O) for u:, uz, L,,,, and L,,,,, and an evolution controlled only by the 
weighting factors l/$ and i/z for L,,,, and 

The case of initial data corresponding to a positive strain Dt, = 0.3, applied to the 
spectrum E ( k )  given by the experiment of Comte-Bellot & Corrsin (1971) a t  z / M  = 
42 with M = 5.08 cm, is presented in figure 2. These data correspond to the flow 
behind the grid just before the rapid contraction. Figure 2 ( a )  shows the behaviour 
of the ratio between the longitudinal 2 and the transversal component of the 
Reynolds stress tensor. Figure 2 (b )  shows the lengthscales Lii, , and Lti,  (here the 
viscous damping is taken into account (see (19)). During the first rapid part of the 
evolution, the Reynolds stress tensor returns towards isotropy, but the anisotropic 
character of the lengthscales is accentuated. These effects are damped after a quarter 
of a revolution (see arrow) and an inverse anisotropy for the Reynolds stress tensor 
is obtained. 

The results for Dt, = -0.3 are presented in Figure 3. Again, the behaviour of ui/u: 
corresponds to a rapid return towards isotropy and to a damping a t  a third of a 
revolution, with an inverse asymptotic anisotropy. The initial anisotropy of the 
scales is also accentuated. 

These results illustrate the spectacular effect of the inertial wave regime on 
physical quantities for non-isotropic flows, submitted to rotation. 

_ -  
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FIQURE 3. Linear evolution of (a )  the energy components and ( b )  the lengthscales for D = 10 s-l 

starting from an axisymmetrically contracted turbulence (rapid distortion). 

Associated invariants 

parameters linearized equations 
Specific Coriolis in the 

Fluctuating field 2 0 . k l k  16.Aq,Ili.N*l 
Second-order correlations 4Q-klk  e,  I4 3 h 
Third-order correlations 2 ~ - ( k l k + P l P + 9 / q )  Xone 

TABLE 2 

4. Departure from isotropy 
Recall that no effect of SZ is found in the linear terms of the system (9) when the 

initial deviator is equal to zero. Therefore to ensure departure from isotropy of the 
double correlations, it appears necessary that the functional relation between T and 
U should be dependent explicitly on 0. Such a property is satisfied only by the more 
sophisticated option EDQNM2. The ‘Triadic Coriolis parameter ’ 

2 0 .  €-+€”+€”- = 2SZ(€pk+€’p P +e”p 4 ) (: ; 3 
takes into account in (15) the wave regime a t  the level of third-order correlations, 
and leads to a semi-axisymmetric configuration (see table 1 )  even if the isotropic 
form of U is introduced in the closure relation. Note that the zero value of these 
parameters characterizes the resonant constraint identified in the classical Green- 
span’s (1968) analysis. SZ thus has influence, but for particular configurations of the 
triad. Table 2 compares the characteristics of the wave regime for different 
correlations and shows the specificity of the correlations of order greater than two. 
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Considering the global influence of Q on one-point correlations, the Rossby 

1 . c  Ro = --. 
number 

q = + < U i ( X ,  t )  U i ( X ,  t ) )  2Q q ’ 
classically compares the timescale (252)-l associated with the Coriolis effect and a 
timescale q / F  associated with the turbulent field. In  our analysis the relevant ratio 
characterizing the action of rotation is given by 

1 {T+k t )  + rl(P> t )  +?+I>  t ) >  
(viscous+eddy) damping = 

triadic Coriolis parameter 
252(cpk + c‘pp + e”pq) 2528,pq(cpk + 6’pp + e”pq) 

But such a parameter is non-local and non-isotropic. I ts  impact on the spectral 
transfer is very hard to predict. It is associated with a specific Rossby number 
(2QBkPq)-l. Nevertheless, the Rossby number is the first practical criterion for 
comparing results of different experiments or computations. 

Our computations have been carried out in order to solve the closed ratc equations 
governing e and z in the semi-axisymmetric configuration without helicity (see 
table l ) ,  according to the equations of $2.  

For the evaluation of @+>; (15), the damping coefficient ~ ( k ,  t )  is chosen following 
Andr6 & Lesieur (1979) : 

1 y(k,t) = vk2+A [ [ I p 2 E ( p ,  t )  dp ; A = 0.355, 

where E(k ,  t )  is the classical energy spectrum, obtained by integration of efk, t )  over 
a spherical shell of radius k. The value of A was initially chosen by referring to the 
test field model results for large values of the turbulent Reynolds number. Cambon 
et al. (1981u,b) checked the suitability of this choice for predicting several 
experimental cases of isotropic and even non-isotropic flows (subjected to straining 
processes) for moderate Reynolds numbers. 

In order to preserve the detailed anisotropy, the transfer terms (whose structure 
is given by (18)) are computed without any assumption about the angular dependence. 
The h-integral is computed by a classical discretization method (by using 20 values 
between 0 and n) and 11 values of pk (between 0 and 1)  are retained for p(k ,pk ,  t )  and 
z ( k ,  p k ,  t ) .  Low-order expansions in terms of angular harmonics, such as that used by 
Herring (1974) seem premature, particularly since the angular dependence of our 
response tensor (14) is very complicated and this has not been truncated in the 
present work. The corresponding times 8z>q” (15) are thus computed for all the 
discretized values of k , p , q , p k  and A. The standard procedure for evaluating the 
integral over p and q is not quoted here. As shown by other authors, high Reynolds 
numbers can be reached by using the logarithmic step (for k ,  p ,  q ) .  Consequently, 
although the fairly important number of angular degrees of freedom, the method 
requires a reasonable amount of computational time with respect to a direct 
numerical simulation. 

For detailed analysis, a typical computation is chosen, started with rigorously 
isotropic initial data : 

and E ( k )  is deduced from a classical grid turbulence experiment (Comtc-Bcllot & 
Corrsin 1971) having a microscalc Reynolds number R, = 70 in the first scction. 

The initial angular response of the energy transfer T, = 47ck2(T,, + T,*,) is shown on 
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- R = O  

0 cosB=O 
R = 10 s-' and - -  - 

FIGURE 4. Initial angular distribution of the energy transfer T, (k ,  cos 0) for 
(isotropic initial data). 

D = 10 s-1 

- 3000 I 
FIGCRE 5.  Initial angular distribution of the energy transfer T , ( k ,  cos 0 )  for SZ = 20 s-l 

(isotropic initial data). Symbols as figure 4. 

figures 4 and 5 for two values of the rotation rate (Q = 10 and 20 s-l) corresponding 
to the initial Rossby numbers of 0.5 and 0.25 respectively. 

The transfer appears strongly dependent on the cosine p k  = cos0; it is compared 
with the corresponding isotropic transfer T ( k )  for D = 0 (full line). Considering the 
small wavenumber range ( T ( k )  < O ) ,  T, appears strongly reduced for small values of 
pk (k  more normal to a), and shifted rather than reduced for pk close to 1 (k  more 
parallel to a). 

This last behaviour leads to a non-isotropic distribution of e ( k , p k ,  t ) .  At the same 
time, an important anisotropy transfer T,  = 4xk2(T,f+T:)N7N7 gives rise to a 
deviator z ( k , p k ,  t ) .  

The axisymmetric trend induced through the transfer term is less important in 
considering spectra integrated over a spherical shell, as shown in figure 6. Two 
contributions of l i j (k ,  0) are compared : the first one S, , (k)  corresponds to the 
longitudinal component q 3 3 ( k )  of U (integral of 033 (k , t )  over a sphere of radius 12) 
and the second S, , (k)  corresponds to the transverse component along a direction 
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FIGURE 7. EDQPU'M evolution of the energy components (isotropic initial da ta )  : -.--.- , ui for 
52 = 10 g-1; ----, u; for 52 = 10 s-1; - - - - -  , ui = ui without rotation (here 52t/21t is also calculated 
with 52 = 10). 

- 
- _ _  

normal to 0. By comparison to the corresponding (unique) component without 
rotation effect, we find a global reduction of the transfer from the large scales. 

Considering now the evolution of one-point quantities, the iion-isotropic 
manifestations are quite different on the Reynolds stresses and on the integral 
lengthscales. The decrease in the two components _ _  of the Reynolds stress tensor is 
slower in the presence of rotation, and the ratio ui/u; grows moderately with time, 
as shown on figure 7. The increase in the three integral lengthscales L,,,,, L,,,,, L,,,, 
as shown in figure 8, appears also moderately accentuated by the rotation ; whereas 
the change in the behaviour of L,,,, is particularly dramatic (very strong 
accentuation in the increase). 

This behaviour of the four lengthscales has been observed by Bardina et al. (1985) 
and Dang & _ _  Roy (1985 b )  with a direct numerical simulation ; however the increase 
in the ratio u:/u; is very slight in these two simulations. 

Moreover, a two-point closure model gives easier access to the angular dependence 
of the spectral quantities, such as e and x ,  and makes it possible to  have a better 
understanding of the behaviours of 2 and Lii, j  directly deduced by integration from 
such spectral quantities (equations ( 2 2 ) ,  (23), (24)). I n  order to help the reader with 
an easier understanding of the analysis, the following explanations will be based on 
sketches rather than on the mathematical relationship. 
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/ L33 .3  

m / 2 n  

FIGURE 8. EDQNM evolution of the integral lengthscales (isotropic initial data)  : ---, 
Q = 10 s-l; ..... , without rotation (here SZt/2n is calculated with SZ = 10). 

Considering the spectral tensor Oij(k,t)  a t  each point of a sphere of radius k ,  two 
kinds of anisotropy can be studied separately: first, the angular variability of the 
basic spectra e and z characterizes a ‘directional anisotropy’; secondly, for a fixed 
orientation of k,  a complex value of z (modulus and argument) characterizes the 
anisotropic structure of (3 which will be referred to as a ‘local anisotropy ’. Figure 9 
presents the procedure adopted for visualizing these anisotropie features, following 
Bertoglio et al. (1979) and Cambon et al. (1985). 

The ellipse shown in figure 9(a)  represents the spectral tensor attached to a wave 
vector k and contained in the plane Pk, according to  figure 1 ; the view is normal to 
k so e(’) and e(2) are the horizontal and the vertical axes. The two axes of the ellipse 
coincide with the vectors $(‘)a and $(2)b, according to (8). Recall that a and b are the 
unit eigenvectors (or principal axes) of (3. associated with the two non-zero 
eigenvalues (or principal components) $’ and $z ($(’) 2 qV2) > 0). The magnitude of 
the spectral energy e = ;($(’) + $(2)) is represented by the size of the ellipse, whereas 
‘the local anisotropy ’ is represented by the eccentricity (or the flatness) of the ellipse. 
This last characteristic is emphasized by plotting a segment (the heavy line) which 
represents the vector V(z) = +($(’) - #’)) a. This segment has length proportional to 
( z I  = +(+(’) - $(’)) and its orientation is that of the principal axis of U associated with 
the maximum principal component, so that (e(’), V(z) )  = !j(x-Ang 2 ) .  

I n  figure 9(b-e) ,  the local representations described above are viewed in 
perspective in the fixed frame of reference according to the definition of the local 
frame (e(l), e(2), klk) .  These intrinsic representations of o ( k )  are invariant by 
rotation around the vertical axis parallel to 52. So the ellipse and the segment are 
plotted in the Pk plane at different points on a circle of radius k ,  corresponding to 
different angles 0 = (k ,  a). 

Four different situations, figures 9 ( b ) ,  9(c), 9(d), 9(e), are considered, each 
one corresponding to a typical ‘directional ’ or ‘local ’ anisotropy. Below each 
spectral sketch, the corresponding contribution to the Reynolds stress tensor 
(u,uj) = J ot j (k)  dk3 is given. The lengths of the segments are proportional to 
the principal components of <uiuj> and their orientations are that of its 
principal axes, in accordance with previous tensorial representations. 
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(a) Representation of in the P, plane 

(b)  (4 
Isotropic reference 

FIGURE 9. Representation of the spectral tensor and anisotropic features. 

Figure 9 ( c )  represents a pure directional anisotropy : V(z)  vanishes and the ellipse 
is a circle whose size depends on 8. In  the isotropic case of reference (figure 9 b )  the 
size of the circle is the same for all the directions and the corresponding Reynolds 
stress tensor is spherical (2 = 2 = 2). Now, we consider in figure 9(c)  the 
anisotropic case where the spectral energy is smaller in the pole (8 = 0, klla) than in 
the equator (8 = tn). The relative deficit of e in the polar zone, where U lies in a 
horizontal plane (because of k - u  = 0) diminishes the horizontal contributions to tho 
Reynolds stress tensor. So a tendency for an axisymmetric Reynolds stress tensor of 
the ‘cigar’ type (2 > 3 = z) is created. In  the opposite case, a relative dominance 
of - - _  the polar spectral energy (at 8 = 0) would create a tendency for a ‘pancake’ type 

Figures 9(d )  and 9(e)  present the effects of a spectral anisotropy linked only to 
z ,  e being chosen independent of 6. The semi-axisymmetry (see table 1) and the 
Hermitian symmetry implies that V(z)  vanishes a t  the pole (6’ = 0) and is either 
horizontal or vertical a t  the equator, where its contribution appears crucial. A 
horizontal orientation of V(z) a t  8 = an, as considered in the sketch 9 ( d )  indicates the 
dominance of the horizontal mode (q5il = 9’ > q5L2 = q5’ at  8 = in) and thus creates a 
tendency for a ‘pancake’ type. In  the opposite case, a vertical orientation of V(z) ,  
as considered in figure 9(e) ,  which corresponds to a dominance of the vertical mode 
(q5iz = q5l > q5il = q52 a t  8 = an) leads to a ‘cigar’ type. 

Coming back to EDQNM results, figure 10(a) shows the shape of the energy 
spectrum 4xk2e(k ,  cos8, t )  for Ot/2x = 5 at two extremal values of cos8 (pole and 
equator). By comparison with the initial data (4nk2e(lc, cos8,O) = E ( k ) )  shown as a 
dashed line, it appears that the spectral energy decreases faster at the pole than a t  
the equator. This relative concentration of the spectral energy is induced only by the 
transfer T,, and creates a tendency for 2 > 2, in accordance with the sketch 9(c). 

Figure 1 0 ( b )  exhibits the corresponding shape of z .  Here 4nk2z is multiplied by k2 
in order to emphasize the contribution from the large wavenumbers. For each value 

(u; < u; = u;,. 
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FIGURE 10. Angular distributions of the energy e (k ,  cos0) and the complex deviator z (k ,  costl) a t  
SZtl27t = 4 (isotropic initial data). 

of k and cos8, the segment plotted represents the vector 4xk4V(z) in the same way 
as in figure 9 ( a ) .  Two specific domains of k appear, the limit being indicated by an 
arrow. 

For small wavenumbers, the segments of significant length (large anisotropic 
- eddies) are more horizontal (perpendicular to 52). This shape creates a tendency for 
ui < 3, in accordance with the sketch 9(d ) .  -- Thus it appears that the contributions 
of e and z to the variation in the ratio u!/ui are just the opposite. Moreover, if we 
compute the Reynolds stress tensor by integrating on _ -  a limited k-range (from 0 to the 
value corresponding to the arrow), we find the ratio u;/u; to be nearly equal to the 
unity. The two kinds of anisotropy are therefore exactly balanced so as to ensure the 
sphericity of the Reynolds stress tensor. 

At higher wavenumbers the segments are more -- vertical (parallel to 52) and the 
contributions of e and z to the increase in the ratio ug/ui are additive. Thus, -- taking 
into account the whole wavenumber range leads to an increase in the ratio ui/u: as 
shown in figure 7 .  

; in accordance with (23) and (24) 
only the small-wavenumber range and the direction ,uk = cos 0 = 0 are relevant. Thc 
slower decay of e with rotation in this direction allows the faster increase of thc two 

Considering now the lengthscales Lll, and 
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lengthscales, whereas the spectacular increase in the ratio Lll ,  3/L33, 
strongly linked with the horizontal orientation of the segments : 

C .  Cambon and L.  ,Jacquin 

appears 

p w e - - z ) l _ = o  2 
L 1 1 , 3  = T 5 2 ’  Y ( z ) l  a =. 2 < 0. 

k dk(e + Z)I,,=~ 

Our analysis shows that the anisotropic features are masked when considering the 
Reynolds stress tensor, and emphasized when considering the lengthscales. 

In  addition, the underlying trends in wave space are consistent with two- 
dimcnsional features in the domain of largc structures. Indeed, in theoretical two- 
dimensional isotropic turbulence, the spectral tensor becomes concentrated in the 
equatorial waveplane, so that 

In such a configuration the vertical mode $i2 = $(2) = e + z  (at  k ,  = 0) vanishes and 
zero values are found for both q-and  L,,,,. Here the two-dimensional trends appear 
simultaneously on e and z but we do not reach a purely two-dimensional state, where 
all the vertical quantities, such as 2, collapse. 

If we discuss our results together with those of numerical simulations by Bardina 
et al. (1985) and Dang & Roy (1985b), we can point out the two following _ _  features: 

( i )  the Reynolds stress tensor remains quasi-spherical (z x ui = ui) in direct 
numerical simulations, but a very weak trend 2 > 2 is exhibited. Our computations 
emphasize the growth of this ratio only if a large wavenumber range is taken into 
account (effect of different Reynolds numbers 1 )  ; 

(ii) the behaviour of the four integral lengthscales is consistent between all the 
calculations, but the increase in L, , , ,  is even more rapid in Dang & Roy’s 
computation than in ours. 

Note that the first term on the right-hand side in ( l l ) ,  associated with the initial 
data for triple correlations, was ignored in our computations. Indeed, it is usually 
stated in two-point closures that Qt decays rapidly with time, so that G: GZ GZ is 
assumed to have only a transient effect, compared to 

J o  

This assumption has been numerically checked in the case treated here. The transfer 
7: corresponding to this peculiar term appears not relevant for times exceeding a 
quarter of a revolution. Nevertheless, this energy transfer has an interesting 
structure, as shown in figure 11, a t  Qt/2rc = Q. By comparison with the initial 
isotropic energy transfer without rotation (dashed line), one observes a suppression 
of the transfer towards the small scales. Here the classical transfer between 
wavenumbers is wholly replaced by a directional drain from pole to equator (see 
arrow). Thus this peculiar contribution reinforces the directional effects already 
described, during a transient phase. 
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FIGURE 1 1  Angular distribution of the energy transfer T,(k ,  cos 0 )  for SZ = 10 8-l obtained from 
the linear evolution of the triple correlations at SZt/2rc = Q. 

5. Conclusion 
The main contribution of the two-point closure model described in this paper is a 

detailed analysis of the angular dependence induced by the rotation in the full three- 
dimensional energy and anisotropy spectra of turbulence. The classical statistical 
quantities can partly reflect this angular dependence, and some attempts to reach the 
angular variability of the spectral energy were proposed by Dang & Roy ( 1 9 8 5 ~ )  in 
the case of strongly anisotropic initial data. Nevertheless, until now, no (fully three- 
dimensional) spectral tensor ~!&(k) derived from a direct numerical simulation has 
been presented in the case of an initial isotropic field evolving in the presence of solid- 
body rotation. 

We have linked together the various (and apparently contradictory) trends 
observed in the behaviour of the Reynolds stress tensor and the integral lengthscales 
along with the typical angular-dependent spectral shape induced by the rotation. 

Starting from isotropic initial data, an anisotropic shape is generated only by the 
triple correlations through the ' triadic Coriolis parameters ' (24). Two manifestations 
of the two-dimensionality are identified: first the different values of the energy 
transfer T, ( k ,  cos 0 )  with respect to COB 8, leads to a positive ' angular energy transfer ' 
from the pole ( C O S ~  = 1, kllf2) to the equator (COSO = 0, klf2) ,  thus tending to 
concentrate the spectral energy in the equatorial plane. Such a trend is compatible 
with the Proudman theorem: the asymptotic state that is predicted by the 
Proudman theorem corresponds in the spectral space to a vanishing of energy, except 
in the plane of wave vectors normal to 0. Secondly, the horizontal mode of the 
spectral tensor becomes more important than the vertical one, in this equatorial 
plane, for low values of k .  Such a trend is not predicted by the Proudman theorem. 
Considering only small values of k ,  the two previous behaviours are counterbalanced 
so as to ensure a quasi-isotropy (sphericity) of the Reynolds stress tensor, but the 
second leads to a strong increase in the ratio Ll l ,3 /L33,3  of the two longitudinal 
integral lengthscales. This last ratio _ _  appears as a relevant two-dimensionality 
criterion, in contrast to the criterion (ut/u; < 1) commonly used. In  fact, the quasi- 
two-dimensionality requires a quite vertical orientation for the vortices, but does not 
necessarily exclude vertical motions. 

11 FLM 202 
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In  accordance with the results expected in the presence of rotation, the transfer of 
energy from small to high wavenumbers is inhibited. At the same time, the strong 
angular dependence of this effect leads to a draining of the energy from the pole to 
the equator. This result contradicts the assumption that the transfer is concentrated 
near the equator and blocked near the pole, as proposed by Bardina et al. (1985). The 
results concerning the angular distribution of T,(lc, cos 8)  and e ( k ,  cos 19) havc been 
recently confirmed by numerical simulation (C. Teisshdre, private communication). 

For a non-isotropic initial condition, the rotation also acts through linear terms in 
the equations governing the double correlations. Calculations of these linear effects 
show spectacular changes of the structure of the Reynolds stress tensor and of the 
lengthscales. These effects are transient : for the particular initial conditions that 
have been chosen, they are completely damped after half a revolution. These results 
could explain particular behaviour observed in experiments, such as that of 
Wigeland (1978), in which initial isotropy is not fulfilled (Cambon & Jacquin 1987). 

Starting from the isotropic initial data, the moderate departure from the isotropy 
of the Reynolds stress tensor can be neglected and a ( k ,  +model, corrected in an ad 
hoc way for rotation, is sufficient in practical modelling, as shown by Bardina et al. 
(1985) and Aupoix, Cousteix & Liandrat (1983). Note that the Aupoix model was 
supported by an isotropic EDQNM model, initially proposed by Cambon et al. 
(1981 6 ) .  Nevertheless the behaviour of the lengthscales cannot be predicted by such 
simplified models. 

Through a detailed investigation of the spectral mechanisms which underlie the 
behaviour of lengthscales and the Reynolds stress components, we have proposed a 
phenomenology of the transition from three-dimensional isotropic state to a quasi 
two-dimensional one for the case of rotating turbulence. The results concerning the 
physical quantities are in qualitative agreement with those of direct numerical 
simulations, but quantitative comparisons have still to be done. Experimental 
results available in the literature are too variable for this purpose. A new experiment 
is in progress at Onera which will provide results for detailed comparisons with the 
present theory. 

The authors are grateful to J .  Mathieu, 0. Leuchter and B. Lakshminarayana for 
valuable discussions and for D. Jeandel for reading an earlier version of this paper. 
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